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OA1 The TPSFE Estimator

OA1.1 Key properties of the TPSFE estimator

As highlighted in section 6 of the paper, the fundamental reason for omitted variable and selection

biases to arise is the missing information on key variables. Once the variation of these missing

variables is properly controlled for, both omitted variable and selection biases will disappear. In

large customs databases with four panel dimensions (i.e., firm, product, destination and time),

fixed effects provide a natural tool to control for unobserved confounding variables.

However, due to endogenous market decisions of firms, correctly controlling for the desired

variation of the unobserved variables that vary along multiple panel dimensions is a non-trivial

task. The key difficulty is to design partition matrices that can account for the unbalanced panel

structure and correctly eliminate the variation of unobserved confounding variables. The most

relevant reference to our TPSFE demeaning procedure is Wansbeek and Kapteyn (1989), who

consider an unbalanced panel with two panel dimensions and two fixed effects.

The econometrics contribution of our TPSFE estimator is to (a) improve the partition matrices

proposed by Wansbeek and Kapteyn (1989), (b) generalize it into a four-dimension unbalanced

panel and (c) apply the method to the estimation of markup elasticities in a large customs database.

In particular for (c), thanks to the simplicity and transparency of our method, our TPSFE approach

makes it easy to understand the underlying variation that is used to identify the markup elasticity

to exchange rates. The approach points to the relevance of including trade patterns of firms’

products to controlling for unobserved confounding variables.

Proposition 1. In an unbalanced panel, our proposed TPSFE procedure eliminates all confounding

variables that vary along the fidD + fit panel dimensions.

We start by introducing Proposition 1, which states that our TPSFE procedure can address all

omitted variable and selection biases that are driven by variables varying along the fidD+fit panel

dimensions. For example, the unobserved marginal cost of a firm’s product varies along fit panel

dimension, while the differences in time-invariant demand conditions across markets facing a firm’s

product vary along fid panel dimension. The additional D in fidD further allows for unobserved

firm-product-destination-specific factors that co-move with the trade patterns of the firm-product.

For example, a change in economic fundamentals Ft that has firm-product-destination specific

effects and influences the set of destination markets of the firm-product will result in variation

along the fidD panel dimension, which can be controlled by our proposed estimator.

We proceed as follows. Subsections OA1.1.1 to OA1.1.3 discuss the key idea and mechanism be-

hind our estimator and compare it to the partition matrices proposed by Wansbeek and Kapteyn

(1989) in a two-dimensional panel. Subsection OA1.1.4 provides a numerical example to clar-
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ify our notation and discussions. Subsection OA1.1.5 generalizes the results to four-dimensional

unbalanced panels.

OA1.1.1 Identifying the markup elasticity in a two-dimensional unbalanced panel

In this subsection, we discuss the identification of the markup elasticity in a two-dimensional

unbalanced panel and introduce two useful lemmas that lay the foundation for the proof of Propo-

sition 1. The idea is that identifying the markup elasticity and controlling for the unobserved

confounding variables in a large customs database with four panel dimensions can be thought of as

a collection of many smaller firm-product level problems that each have two panel dimensions, i.e.,

destination (d) and time (t). In those more refined two-dimensional problems, Lemma 1 shows the

original partition methods of Wansbeek and Kapteyn (1989) can be decomposed into a two-step

procedure with the second step implicitly applying a trade pattern related partition.

Lemma 1. In a two-dimensional unbalanced panel, factors varying along the d+t panel dimensions

can be eliminated using a two-step procedure by which, in the first step, all variables are demeaned

across observed destinations within each period and, in the second step, destination (d) and trade

pattern (D) fixed effects are applied additively, i.e., d+D.

Building on the insights of Lemma 1, Lemma 2 shows a better estimator can be constructed

to deal with more complicated cases, where the unobserved confounding variables vary along the

dD+t panel dimensions. The key idea is that, in the second step of the procedure, we can combine

the d and D fixed effects interactively instead of additively.

Lemma 2. In a two-dimensional unbalanced panel, factors varying along the dD + t dimensions

can be eliminated in a two-step procedure in which all variables are demeaned across observed

destinations within each period in the first stage and destination (d) and trade pattern (D) fixed

effects are applied multiplicatively, i.e., dD, in the second stage. This procedure also eliminates all

confounding factors that the d+ t fixed effects can address.

OA1.1.2 Proof of Lemma 1

The proof proceeds with two steps. In the first step, we construct a demeaned fixed effect esti-

mator following Wansbeek and Kapteyn (1989). In the second step, we show that the constructed

estimator implicitly applies trade pattern fixed effects.

Step 1: Let nD
t

(
nD
t ≤ nD

)
be the number of observed destinations for year t. Let nDT ≡∑

t n
D
t . Let At be the

(
nD
t × nD

)
matrix obtained from the (nD × nD) identity matrix from which
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the rows corresponding to the destinations not observed in year t have been omitted, and consider

Z ≡

(
Z1, Z2

nDT × nD nDT × nT

)
≡


A1 A1ιnD

...
. . .

AnT AnT ιnD

 (OA1-1)

where ιx is a vector of ones with length x, e.g., ιnD is a vector of ones with length nD. The

matrix Z gives the dummy-variable structure for the incomplete-data model. (For complete data,

Z1 = ιnT ⊗ InD , Z2 = InT ⊗ ιnD .) Define

P2 ≡ InDT − Z2 (Z
′
2Z2)

−1
Z ′

2

Z̄ ≡ P2Z1.

Wansbeek and Kapteyn (1989) show P is a projection matrix onto the null-space of Z:

P ≡ P2 − Z̄(Z̄ ′Z̄)−Z̄ ′

where ‘–’ stands for a generalized inverse. It follows that, in an unbalanced panel with unobserved

confounding variables varying along d and t panel dimensions, unbiased and consistent estimates

can be obtained by running an OLS regression with the demeaned data obtained by pre-multiplying

the data matrix (Y,X) by the projection matrix P .

Step 2: We now show the projection matrix P can be decomposed into two projection matrices

with the second projection matrix applying destination and trade pattern fixed effects in additive

terms. We begin by noting that the following relationship holds:

P ≡ P2 − Z̄(Z̄ ′Z̄)−Z̄ ′ = (InDT − Z̄(Z̄ ′Z̄)−Z̄ ′)P2 ≡ P1P2 (OA1-2)

where P1 ≡ InDT −Z̄(Z̄ ′Z̄)−Z̄ ′ and the equality of (OA1-2) uses the fact that P2 is idempotent (i.e.,

P2Z1 = P2P2Z1 = P2Z̄). Therefore, applying the projection matrix P to the data matrix (Y,X)

is equivalent to first pre-multiplying (Y,X) by the projection matrix P2, and then pre-multiplying

(P2Y, P2X) by the projection matrix P1. The projection P2 applied in the first step is essentially

a destination-demean process (the same first step as our TPSFE estimator).1 The projection P1

applied in the second step is, by definition, a “demeaning” process at the Z̄ level. To see the exact

dummy structure based on which the second “demeaning” process is applied, note that Z̄ can be

rewritten as

Z̄ = P2Z1 = Z1 − Z2 (Z
′
2Z2)

−1
Z ′

2Z1 (OA1-3)

1See the numerical example in subsection OA1.1.4.
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where Z1 is a set of destination dummies as defined in (OA1-1) and Z2 (Z
′
2Z2)

−1 Z ′
2Z1 is a set of

trade pattern dummies.

To see that Z2 (Z
′
2Z2)

−1 Z ′
2Z1 follows a trade pattern structure, note that Z2 (Z

′
2Z2)

−1 Z ′
2 is a

block diagonal matrix with its diagonal blocks equal to a matrix of ones multiplied by (the inverse

of) the number of destinations in each period, i.e.,

Z2 (Z
′
2Z2)

−1
Z ′

2 = diag

(
1

nD
1

A1ιnDι′nDA
′
1, ...,

1

nD
nT

AnDιnDι′nDA
′
nD

)
= diag

(
1

nD
1

ιnD
1
ι′nD

1
, ...,

1

nD
nT

ιnD
nT
ι′nD

nT

)
(OA1-4)

where the first equality holds by the definition of Z2 in (OA1-1) and given the fact that (Z ′
2Z2)

−1 is

a diagonal matrix, with its elements indicating (the inverse of) the number of observed destinations

in each period, i.e.,

(Z ′
2Z2)

−1
= diag

(
1

nD
1

,
1

nD
2

, ...,
1

nD
nT

)
; (OA1-5)

the second equality in (OA1-3) holds by the definition of the A matrices in (OA1-1). Pre-

multiplying Z1 by Z2 (Z
′
2Z2)

−1 Z ′
2 and using the definition of Z1, we have

Z2 (Z
′
2Z2)

−1
Z ′

2Z1 =


1
nD
1
ιnD

1
ι′
nD
1
A1

...
1

nD
nT
ιnD

nT
ι′
nD
nT
AnD

 (OA1-6)

where ι′
nD
t
At gives the trade pattern in year t and pre-multiplying it by ιnD

t
repeats the same trade

pattern nD
t times—resulting in the trade pattern matrix for all destinations in period t.2

Therefore, the second “demeaning” projection matrix P1 ≡ InDT − Z̄(Z̄ ′Z̄)−Z̄ ′ is applied on

Z̄ that consists of two additive parts: (a) the destination dummies Z1 and (b) the trade pattern

dummies Z2 (Z
′
2Z2)

−1 Z ′
2Z1.

OA1.1.3 Proof of Lemma 2

A key difference between our proposed TPSFE estimator and a conventional fixed effect estimator

adding destination and time fixed effects lies in the way the trade patterns are applied in the

second step. While the conventional approach applies the destination and trade pattern fixed

effects additively (as can be seen from (OA1-3) and (OA1-6)), our estimator applies the trade

pattern fixed effect multiplicatively.

2See Appendix OA1.1.4 for an numerical example of the matrices.

4



We start our proof by introducing notation and definitions. Denote the set of exporting desti-

nations in year t as Dt.
3 Let T P be the set of unique trade patterns in all years, i.e.,

T P ≡ {D1, ..., DnT }̸= (OA1-7)

and nT P ≡ |T P| be the number of unique trade patterns. Let T Px denote the x’th element of

T P . We create destination-specific trade patterns by combining the destinations in a trade pattern

with the trade pattern itself, i.e., {(d, T Px) : d ∈ T Px}. Let DT P be the set of destination-specific

trade patterns, i.e.,

DT P ≡ {(d, T P1) : d ∈ T P1, ..., (d, T PnT P ) : d ∈ T PnT P} .

Let nDT P ≡ |DT P| be the number of unique destination-trade pattern pairs observed in the data.

The dummy structure of destination-specific trade patterns is given by the following (nDT ×
nDT P) matrix:

Z3 ≡


B1

...

BnT

 ≡


K11 · · · K1nT P

...
. . .

...

KnT 1 · · · KnTnT P

 (OA1-8)

where Bt is an nD
t × nDT P matrix indicating the destination-specific trade patterns in period t.

Each Bt can be decomposed into nT P block matrices with its y’th block being equal to an identity

matrix if the trade pattern of period t, Dt, is the same as the y’th trade pattern, T Py, and a

matrix of zeros otherwise. That is, ∀x ∈ {1, ..., nT}, y ∈ {1, ..., nT P},

Kxy ≡

InD
x

if Dx = T Py

0nD
x ×nD

T P (y) if Dx ̸= T Py

(OA1-9)

where InD
x
is an identity matrix of size nD

x ; 0nD
x ×nD

T P (y) is a matrix of zeros of size nD
x ×nD

T P(y); and

nD
T P(y) ≡ |{d : d ∈ T Py}| is the number of destinations in the y’th unique trade pattern T Py.

Let the projection matrix be P3P2, where P3 ≡ InDT − Z3 (Z
′
3Z3)

−1 Z ′
3. The first projection P2

is the same destination-demean process, whereas the second projection P3 applies demeaning at

the destination-trade pattern level. As discussed in previous sections, the interactive construction

of trade pattern fixed effects enables us to handle interactive error terms and reduce the time

variation of the unobserved confounding variables.

3In a vector form, ι′
nD
t
At indicates the set of destinations in year t.
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To formally prove Lemma 2, we need to show that

P3P2Z1 = 0,

P3P2Z2 = 0,

P3P2Z3 = 0.

We begin by noting that the second relationship holds by definition (of P2):

P3P2Z2 = [InDT − Z3 (Z
′
3Z3)

−1
Z ′

3][InDT − Z2 (Z
′
2Z2)

−1
Z ′

2]Z2 = 0.

We prove P3P2Z1 = 0 and P3P2Z3 = 0 by relying on two relationships that we state here

and prove later in the text. First, the two projection matrices T3 ≡ Z3 (Z
′
3Z3)

−1 Z ′
3 and T2 ≡

Z2 (Z
′
2Z2)

−1 Z ′
2 commute:

T3T2 = T2T3. (OA1-10)

Second, T3 projects Z1 to itself:

T3Z1 = Z1. (OA1-11)

Given (OA1-10) and (OA1-11), it follows that

P3P2Z1 = [InDT − T3][InDT − T2]Z1

= Z1 − T3Z1 + T3T2Z1 − T2Z1

= T3T2Z1 − T2Z1

= T2T3Z1 − T2Z1

= T2Z1 − T2Z1

= 0

where the second equality is due to (OA1-11); the third equality holds due to the commutativity

(OA1-10); the fourth equality applies (OA1-11) one more time. Following the same procedure, it

can be shown that P3P2Z3 = 0.

We complete our proofs showing that (OA1-10) and (OA1-11) hold.

Proof of (OA1-10):

Proof. We want to prove that the two projection matrices Z3 (Z
′
3Z3)

−1 Z ′
3 and Z2 (Z

′
2Z2)

−1 Z ′
2 com-

mute. We do so by proving that the product of these two matrices Z3 (Z
′
3Z3)

−1 Z ′
3Z2 (Z

′
2Z2)

−1 Z ′
2
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is symmetric.

Z3 (Z
′
3Z3)

−1 Z ′
3 can be written as:

Z3 (Z
′
3Z3)

−1
Z ′

3 =


B1 (Z

′
3Z3)

−1B′
1 · · · B1 (Z

′
3Z3)

−1B′
nT

...
. . .

...

B1 (Z
′
3Z3)

−1B′
nT · · · BnT (Z ′

3Z3)
−1B′

nT

 (OA1-12)

The blocks of Z3 (Z
′
3Z3)

−1 Z ′
3 can be further simplified using the following two observations.

First, (Z ′
3Z3)

−1 is an nDT P × nDT P diagonal matrix with its elements indicating (the reverse of)

the number of repetitions for each destination-trade pattern pair, i.e.,

(Z ′
3Z3)

−1
=

(∑
t

B′
tBt

)−1

=


∑

tK
′
t1Kt1 · · ·

∑
tK

′
t1KtnT P

...
. . .

...∑
tK

′
tnTKt1 · · ·

∑
tK

′
tnT PKtnT P


−1

=


rT P
1 InD

T P (1)

. . .

rT P
nT PInD

T P (nT P )


−1

= diag

(
1

rT P
1

InD
T P (1), ...,

1

rT P
nT P

InD
T P (nTP )

)
(OA1-13)

where rT P
z ≡ |{t : Dt = T Pz}| is the number of periods that the trade pattern T Pz is observed

for z ∈
{
1, ..., nT P}. The third equality holds as K ′

thKtj = 0 ∀h ̸= j and K ′
thKtj = InD

h
∀h = j by

definitions of (OA1-8) and (OA1-9).

Second, the (h, j) block of Z3 (Z
′
3Z3)

−1 Z ′
3, i.e., Bh (Z

′
3Z3)

−1B′
j, is equal to a matrix of zeros if

the trade pattern of period h is different from that of period j and is equal to an identity matrix

multiplied by a scalar if the trade pattern of the two periods is the same:

Bh (Z
′
3Z3)

−1
B′

j =
∑

z∈{1,..,nT P}

1

rT P
z

KhzInD
T P (z)K

′
jz =


1
rDh
InD

h
if Dh = Dj

0nD
h ×nD

j
if Dh ̸= Dj

(OA1-14)

where rDz ≡ |{t : Dt = Dz}| is the number of periods that the trade pattern Dz is observed.

Finally, from (OA1-12) and (OA1-4), Z3 (Z
′
3Z3)

−1 Z ′
3Z2 (Z

′
2Z2)

−1 Z ′
2 can be decomposed into
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nT × nT blocks:

T ≡ Z3 (Z
′
3Z3)

−1
Z ′

3Z2 (Z
′
2Z2)

−1
Z ′

2

=


B1 (Z

′
3Z3)

−1B′
1

1
nD
1
ιnD

1
ι′
nD
1

· · · B1 (Z
′
3Z3)

−1B′
nT

1
nD
nT
ιnD

nT
ι′
nD
nT

...
. . .

...

B1 (Z
′
3Z3)

−1B′
nT

1
nD
1
ιnD

1
ι′
nD
1

· · · BnT (Z ′
3Z3)

−1B′
nT

1
nD
nT
ιnD

nT
ι′
nD
nT


where block (x, y) of T is given by

T (x, y) = Bx (Z
′
3Z3)

−1
B′

y

1

nD
y

ιnD
y
ι′nD

y
.

From (OA1-14), it is straightforward to see that T (x, y) = T (y, x)′. That is, if the trade pattern

of period x is the same as that of period y, then T (x, y) = T (y, x)′ = 1
rDx nD

x
ιnD

x
ι′nD

x
= 1

rDy nD
y
ιnD

y
ι′nD

y
; if

the trade pattern of period x is different from that of period y, then T (x, y) = T (y, x)′ = 0nD
x ×nD

y
.

Now, given that Z3 (Z
′
3Z3)

−1 Z ′
3, Z2 (Z

′
2Z2)

−1 Z ′
2, and T are all symmetric, it follows that

T = Z3 (Z
′
3Z3)

−1
Z ′

3Z2 (Z
′
2Z2)

−1
Z ′

2 = T ′ = Z2 (Z
′
2Z2)

−1
Z ′

2Z3 (Z
′
3Z3)

−1
Z ′

3.

Proof of (OA1-11):

Proof. From (OA1-12) and the definition of Z1 in (OA1-1), we can write T3Z1 as

T3Z1 =


∑

tB1 (Z
′
3Z3)

−1B′
tAt

...∑
tBnT (Z ′

3Z3)
−1B′

tAt

 .
Using (OA1-14), we have

Bx (Z
′
3Z3)

−1
B′

yAy =


1
rDx
Ax = 1

rDy
Ay if Dx = Dy

0nD
x ×nD if Dx ̸= Dy

(OA1-15)
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With (OA1-15), it follows that

T3Z1 =


∑

t:Dt=D1

1
rD1
A1

...∑
t:Dt=D

nT

1
rD
nT
AnT

 =


A1

...

AnT

 = Z1.

OA1.1.4 A numerical example with projection matrices to visualize differences across

estimators

To clarify how the estimator works, we now spell out all the key matrices from the above discussions

and provide a numerical example. For illustrative purposes, we use a much simpler data generating

process:

pdt = β0 + β1edt + β2mdt

edt = σe(mdt + udt)

mdt = ϑd + ϵt + ψd ∗ υt

with the following reduced form selection rule:

pdt =

{
observed if γ0 + γ1edt + γ2mdt < 0

missing if γ0 + γ1edt + γ2mdt ≥ 0

where ϑd, ϵt, ψt, υt and udt are simulated from a standard normal distribution. We set σe to be

0.5 such that the bilateral exchange rate shocks are slightly less volatile than the idiosyncratic

marginal cost shocks. We set β1 = β2 = 1 such that an exchange rate appreciation of the home

currency and a positive marginal cost shock increase the border price denominated in the home

currency. This also implies a positive omitted variable bias. We set γ1 = −0.1 and γ2 = 1 such

that the selection bias is also positive. The magnitude of γ1 is set to be smaller than that of γ2

to reflect the fact that the aggregate shocks (such as bilateral exchange rates) is less detrimental

for the firm’s entry decisions compared to idiosyncratic factors (such as the unobserved marginal

cost). We reduce the number of destinations to 5 and the number of years to 4 to keep the size

of the matrices tractable. To keep the example clean, we only allow for two distinct values of the

factors affecting the time variation of the unobserved marginal cost (i.e., ϵt and υt). We set γ0

such that half of the observations (destination-year pairs) are dropped.

Table OA1-1 shows one particular realization of such a data generating process. The firm

exports in all four periods, and its decisions generate two unique trade patterns. In the first two
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years, the firm exports to destinations 2, 4 and 5. In the last two years, the firm exports only to

destinations 4 and 5.

Table OA1-1: Simulated Data

Year Destination Trade Pattern pdt edt mdt ϵt υt

1 2 2 4 5 -0.072 0.155 -0.227 0.843 0.277

1 4 2 4 5 0.178 -0.092 0.270 0.843 0.277

1 5 2 4 5 -1.138 -1.252 0.114 0.843 0.277

2 2 2 4 5 0.455 0.682 -0.227 0.843 0.277

2 4 2 4 5 0.636 0.366 0.270 0.843 0.277

2 5 2 4 5 0.068 -0.046 0.114 0.843 0.277

3 4 4 5 -0.313 0.689 -1.002 -0.191 1.117

3 5 4 5 -0.315 0.071 -0.387 -0.191 1.117

4 4 4 5 -1.099 -0.097 -1.002 -0.191 1.117

4 5 4 5 -0.747 -0.360 -0.387 -0.191 1.117

Z1 is the matrix that contains the destination dummies. To economize on the matrix size,

we only create dummies for destinations that are observed, i.e., we do not create dummies for

destinations 1 and 3. For example, the first column of Z1 reports the observations in which the

firm sells to destination 2. From the matrix, we can see that the firm sells to destination 2 two

times. Z2 is the matrix that contains the year dummies. Z3 gives our proposed destination-specific

trade pattern dummies. As defined in (OA1-8) and (OA1-9), it is constructed by interacting

the destination dummies with the trade pattern dummies. For example, the first three columns

represent the dummy structure for the destinations related to the 2 4 5 trade pattern, i.e., 2−2 4 5,

4 − 2 4 5 and 5 − 2 4 5. Similarly, the last two columns represent the dummy structure for the

destinations related to the 4 5 trade pattern, i.e., 4− 4 5 and 5− 4 5.

Z1 =



1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

0 1 0

0 0 1

0 1 0

0 0 1



Z2 =



1 0 0 0

1 0 0 0

1 0 0 0

0 1 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1

0 0 0 1



Z3 =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 1 0

0 0 0 0 1



(OA1-16)
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From these, we can see clearly that P2 is a destination demean process.

P2 =



0.67 −0.33 −0.33 0 0 0 0 0 0 0

−0.33 0.67 −0.33 0 0 0 0 0 0 0

−0.33 −0.33 0.67 0 0 0 0 0 0 0

0 0 0 0.67 −0.33 −0.33 0 0 0 0

0 0 0 −0.33 0.67 −0.33 0 0 0 0

0 0 0 −0.33 −0.33 0.67 0 0 0 0

0 0 0 0 0 0 0.50 −0.50 0 0

0 0 0 0 0 0 −0.50 0.50 0 0

0 0 0 0 0 0 0 0 0.50 −0.50

0 0 0 0 0 0 0 0 −0.50 0.50


By way of example, for the first observation, 2/3p11 − 1/3p21 − 1/3p31 = p11 − 1

3
(p11 + p21 + p31).

As discussed in subsection OA1.1.2, Z2 (Z
′
2Z2)

−1 Z ′
2Z1 follows a trade pattern structure and

Z̄ suggests an additive relationship between the destination dummies Z1 and the trade pattern

dummies Z2 (Z
′
2Z2)

−1 Z ′
2Z1.

Z2 (Z
′
2Z2)

−1
Z ′

2Z1 =



0.33 0.33 0.33

0.33 0.33 0.33

0.33 0.33 0.33

0.33 0.33 0.33

0.33 0.33 0.33

0.33 0.33 0.33

0 0.50 0.50

0 0.50 0.50

0 0.50 0.50

0 0.50 0.50


Z̄ = Z1 − Z2 (Z

′
2Z2)

−1
Z ′

2Z1 =



0.67 −0.33 −0.33

−0.33 0.67 −0.33

−0.33 −0.33 0.67

0.67 −0.33 −0.33

−0.33 0.67 −0.33

−0.33 −0.33 0.67

0 0.50 −0.50

0 −0.50 0.50

0 0.50 −0.50

0 −0.50 0.50


As we can see from (OA1-17), the projection P does not follow a particular structure. Therefore,

our two-step decomposition P = P1P2 discussed in subsection OA1.1.2 helps to unveil the key

economic mechanisms behind the statistical projection.

P =



0.46 −0.29 −0.17 −0.21 0.04 0.17 −0.13 0.13 −0.13 0.13

−0.29 0.46 −0.17 0.04 −0.21 0.17 0.13 −0.13 0.13 −0.13

−0.17 −0.17 0.33 0.17 0.17 −0.33 0 0 0 0

−0.21 0.04 0.17 0.46 −0.29 −0.17 −0.13 0.13 −0.13 0.13

0.04 −0.21 0.17 −0.29 0.46 −0.17 0.13 −0.13 0.13 −0.13

0.17 0.17 −0.33 −0.17 −0.17 0.33 0 0 0 0

−0.13 0.13 0 −0.13 0.13 0 0.38 −0.38 −0.13 0.13

0.13 −0.13 0 0.13 −0.13 0 −0.38 0.38 0.13 −0.13

−0.13 0.13 0 −0.13 0.13 0 −0.13 0.13 0.38 −0.38

0.13 −0.13 0 0.13 −0.13 0 0.13 −0.13 −0.38 0.38



(OA1-17)

Let Y = [−0.072, 0.178,−1.138, 0.455, 0.636, 0.068,−0.313,−0.315,−1.099,−0.747]′ and X =

[0.155,−0.092,−1.252, 0.682, 0.366,−0.046, 0.689, 0.071,−0.097,−0.360]′. The OLS estimator is

given by (X ′X)−1X ′Y , which gives an estimate of β̂1 = 0.745. The estimator applying d and t

fixed effects is given by (X ′P ′PX)−1X ′P ′Y , which gives β̂1 = 1.508. The estimator applying dD
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and t fixed effects is given by (X ′P ′
2P

′
3P3P2X)−1X ′P ′

2P
′
3P3P2Y , which gives the calibrated value of

β̂1 = 1.000.

OA1.1.5 Identifying markup elasticities in unbalanced panels: adding firm and prod-

uct dimensions

In this subsection, we introduce firm and product panel dimensions and prove Proposition 1.

The key idea is that the data structure of a more complicated customs dataset with four panel

dimensions can be viewed as a collection of two dimensional problems presented in (OA1-1).

Let nD
fi denote the total number of export destinations by the firm-product and nD

fit

(
nD
fit ≤ nD

fi

)
be the number of observed destinations in year t. Let nT

fi denote the maximum number of exporting

years and the nDT
fi ≡

∑
t n

D
fit be the number of observed transactions by firm-product fi. Let Afit

be the
(
nD
fit × nD

fi

)
matrix obtained from the (nD

fi×nD
fi) identity matrix from which, for each firm-

product fi, the rows corresponding to the destinations not observed in year t have been omitted.

For each firm-product fi, the destination and time fixed effects of the firm-product can be defined

analogously to (OA1-1) as

Zfi,1 ≡


Afi1

...

AfinT
fi

 , Zfi,2 ≡


Afi1ιnD

fi

. . .

AfinT
fi
ιnD

fi


where Zfi,1 is an n

DT
fi ×nD

fi matrix that gives the dummy structure for the destination fixed effects

of firm-product fi and Zfi,2 is an nDT
fi × nT

fi matrix that gives the dummy structure for the year

fixed effects of firm-product fi. Similarly, the destination-specific trade pattern dummies of the

firm-product, Zfi,3, can be defined as in (OA1-8) and (OA1-9).

Let nFIDT be the total number of (non-missing) observations in the dataset; nFI be the total

number of distinct firm-products in the dataset; nFID ≡
∑

fi n
D
fi be the sum of distinct destinations

over all firm-products; nFIT ≡
∑

fi n
T
fi be the sum of distinct time periods over all firm-products;

and nFIDT P ≡
∑

fi n
DT P
fi be the sum of distinct destination-specific trade patterns over all firm-

products. The dummy structure for the full dataset including all firm-products can be constructed

as:

Z1 ≡


Z1,1

. . .

ZnFI ,1

 , Z2 ≡


Z1,2

. . .

ZnFI ,2

 , Z3 ≡


Z1,3

. . .

ZnFI ,3


where Z1 is an nFIDT × nFID block diagonal matrix representing the dummy structure of
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firm-product-destination fixed effects; Z2 is an nFIDT × nFIT block diagonal matrix representing

the dummy structure of firm-product-time fixed effects; and Z3 is an nFIDT × nFIDT P block di-

agonal matrix representing the dummy structure of firm-product-destination-trade pattern fixed

effects. The matrices inside Z1, Z2 and Z3 represent the dummy structure of the corresponding

firm-product. For example, the Z1,1 and ZnFI ,1 inside Z1 give the dummy structure of destination

fixed effects for the first and the last firm-product in the dataset respectively. Matrices Z1, Z2

and Z3 are block diagonal because all the fixed effects we consider are firm-product specific, under

which the elements of Zfi,1, Zfi,2 and Zfi,3 must be zero for the observations associated with the

firm-products other than fi.

Proof of Proposition 1:

Proof. Define the two demeaning processes of the TPSFE as

P2 ≡ InFIDT − Z2 (Z
′
2Z2)

−1
Z ′

2 (step 1 of TPSFE)

P3 ≡ InFIDT − Z3 (Z
′
3Z3)

−
Z ′

3 (step 2 of TPSFE)

where InFIDT is an nFIDT × nFIDT identity matrix.

We want to show
P3P2Z1 = 0,

P3P2Z2 = 0,

P3P2Z3 = 0.

First of all, similar to the two-dimensional case, the second equality holds trivially by the design of

P2 (since [InFIDT −Z2 (Z
′
2Z2)

−1 Z ′
2]Z2 = 0). Secondly, block diagonal matrices have a nice property

that the multiplication of two conformable block diagonal matrices is equal to the multiplication of

the corresponding diagonal blocks of the two matrices. This allows us to apply the key relationships

in the two-dimensional panel case to each of the block matrices in Z1, Z2 and Z3. Specifically, we

have

Z3 (Z
′
3Z3)

−
Z ′

3Z1 =


Z1,3

(
Z ′

1,3Z1,3

)−
Z ′

1,3Z1,1

. . .

ZnFI ,3

(
Z ′

nFI ,3ZnFI ,3

)−
Z ′

nFI ,3ZnFI ,1



=


Z1,1

. . .

ZnFI ,1

 = Z1 (OA1-18)

where the first equality uses the property of block diagonal matrices and the the second equality
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uses the relationship of (OA1-11). Similarly, using the property of block diagonal matrices and

the firm-product level relationship (OA1-10), it is straightforward to show the following equations

hold:4

Z3 (Z
′
3Z3)

−
Z ′

3Z2 (Z
′
2Z2)

−1
Z ′

2 = Z2 (Z
′
2Z2)

−1
Z ′

2Z3 (Z
′
3Z3)

−
Z ′

3 (OA1-19)

Z3 (Z
′
3Z3)

−
Z ′

3Z2 (Z
′
2Z2)

−1
Z ′

2Z1 = Z2 (Z
′
2Z2)

−1
Z ′

2Z1 (OA1-20)

Using (OA1-18), (OA1-19) and (OA1-20), it follows that

P3P2Z1 = [InFIDT − Z3 (Z
′
3Z3)

−
Z ′

3][InFIDT − Z2 (Z
′
2Z2)

−1
Z ′

2]Z1

= [InFIDT − Z2 (Z
′
2Z2)

−1
Z ′

2]Z1 − Z3 (Z
′
3Z3)

−
Z ′

3[InFIDT − Z2 (Z
′
2Z2)

−1
Z ′

2]Z1

= [InFIDT − Z2 (Z
′
2Z2)

−1
Z ′

2]Z1 − [InFIDT − Z2 (Z
′
2Z2)

−1
Z ′

2]Z1 = 0

and

P3P2Z3 = [InFIDT − Z3 (Z
′
3Z3)

−
Z ′

3][InFIDT − Z2 (Z
′
2Z2)

−1
Z ′

2]Z3

= [InFIDT − Z3 (Z
′
3Z3)

−
Z ′

3]Z3 − [InFIDT − Z3 (Z
′
3Z3)

−
Z ′

3]Z2 (Z
′
2Z2)

−1
Z ′

2Z3

= 0− [Z2 (Z
′
2Z2)

−1
Z ′

2Z3 − Z3 (Z
′
3Z3)

−
Z ′

3Z2 (Z
′
2Z2)

−1
Z ′

2Z3] = 0

OA1.2 The TPSFE estimator in view of the control function approach

In this subsection, we discuss how our approach relates to the classical control function approach

(e.g., Heckman (1979)) and the first difference approach pursued by Kyriazidou (1997).5 We start

by rewriting the problem addressed by Heckman (1979) in his seminal work on selection in cross-

sectional data. In what follows, think of pt as the price of a product, and as a function of a set of

4It is worth noting that the modification of the projection matrix in an unbalanced panel needs to be done with
extreme caution. A seemingly more general setting can, in lots of cases, result in more (rather than less) bias.
Alternative demeaning or partition methods do not necessarily satisfy (OA1-19) and (OA1-20) and can potentially
result in substantial biases.

5Our estimation approach is related to three strands of the panel data literature. The first strand focuses on
estimating the parameter of interest in a panel data model with selection. Existing discussions are restricted to
selection equations with one dimensional fixed effects or those that can be combined into one dimensional fixed
effects (see recent handbook chapters by Verbeek and Nijman (1996), Honoré et al. (2008) and Matyas (2017)
for a complete literature review). The second strand constructs methods of estimating selection equations with
unobserved heterogeneity along two dimensions (e.g., Fernández-Val and Weidner (2016) and Charbonneau (2017)).
Our approach differs from theirs in that we do not need to estimate the selection equation, but instead, we rely
on the realized patterns to formulate a new panel dimension to address the selection problem. A few papers have
examined multi-dimensional fixed effects in unbalanced panels (e.g., Wansbeek and Kapteyn (1989) and Balazsi et
al. (2018)).
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controls x′
t, observed if the firm decides to enter the market:

pt = x′
tβ + εt

= x′
tβ + E(εt|xt, st) + νt

st = 1{w′
tγ + ut}

where st is an indicator variable that equals one if pt is observed; E(εt|xt, st) is the selection

bias and νt ≡ [εt − E(εt|xt, st)] is an error term that is uncorrelated with the vector of observed

variables xt and the selection bias. wt is a vector of observed variables in the selection equation

which can overlap with the elements in xt. As is well known, selection bias is a problem if

E(εt|xt, st) ̸= 0. The solution of Heckman (1979) is to estimate the function of E(εt|xt, st) under

some parametric assumptions and then add the predicted value ̂E(εt|xt, st) as a control variable

in the main estimating equation. The essence of this approach is to estimate the parameter of

interest conditional on the probability of an observation being observed.

Closer to our problem, where the firm chooses among potential export destination markets,

Kyriazidou (1997) studies selection in a two dimensional panel with one fixed effect:

pdt = x′
dtβ +Md + εdt (OA1-21)

= x′
dtβ +Md + E(Md|xdt, sdt) + E(εdt|xdt, sdt) + νdt

sdt = 1{w′
dtγ +Wd + udt} (OA1-22)

where Md and Wd are unobserved variables varying along the destination d dimension (i.e. des-

tination fixed effects). E(Md|xdt, sdt) and E(εdt|xdt, sdt) represent the selection biases caused

by the unobserved destination-specific heterogeneity and other omitted variables, respectively.

νdt ≡ [εdt−E(εdt|xdt, sdt)−E(Md|xdt, sdt)] is an error term that is uncorrelated with the observed

explanatory variables and the selection biases. pdt denotes the price and sdt is an indicator vari-

able that takes a value of one if the firm exports to destination d in period t and zero otherwise.6

Kyriazidou (1997) notes that E(Md|xdt, sdt) and E(εdt|xdt, sdt) no longer vary along the time

dimension when w′
d1γ = w′

d2γ, i.e., under the following conditional exchangeability condition:

F (εd1, εd2, ud1, ud2|ϑd) = F (εd2, εd1, ud2, ud1|ϑd) (OA1-23)

where ϑd ≡ (xd1,xd2,wd1,wd2,Wd,Md) is a destination specific vector containing information

on observed and unobserved variables. Condition (OA1-23) states that (εd1, εd2, ud1, ud2) and

6Kyriazidou (1997) discusses a case in which the number of time periods is small (nT = 2). Therefore, a Heckman
(1979) style estimator cannot be applied as it will suffer from the incidental parameters problem due to the limited
time dimension.
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(εd2, εd1, ud2, ud1) are identically distributed conditional on ϑd. As noted by Kyriazidou (1997), the

main term causing the selection bias, E(εdt|xdt, sdt), is no longer time-varying when w′
d1γ = w′

d2γ

under condition (OA1-23):

E(εd1|sd1 = 1, sd2 = 1|ϑd)

≡ E(εd1|ud1 < w′
d1γ +Wd, ud2 < w′

d2γ +Wd,ϑd)

= E(εd1|ud1 < w′
d2γ +Wd, ud2 < w′

d1γ +Wd,ϑd) (OA1-24)

= E(εd2|ud2 < w′
d2γ +Wd, ud1 < w′

d1γ +Wd,ϑd) (OA1-25)

≡ E(εd2|sd2 = 1, sd1 = 1|ϑd)

where the first equality (OA1-24) holds because w′
d1γ = w′

d2γ and the second equality (OA1-25)

holds because of the conditional exchangeability condition (OA1-23). Since the selection bias is

no longer time varying, i.e., E(εd1|sd1 = 1, sd2 = 1|ϑd) = E(εd2|sd2 = 1, sd1 = 1|ϑd), it can be

absorbed by destination fixed effects. Kyriazidou (1997) proposes a two-step estimator: the first

step consistently estimates γ̂ and the second step differences out the fixed effect and the selection

terms conditional on destinations for which w′
d1γ̂ = w′

d2γ̂.

Our problem can be specified in (OA1-26) and (OA1-27) as follows:

pfidt = x′
dtβ +Mfid + Cfit + εfidt (OA1-26)

sfidt = 1{w′
dtγ +Wfid +Qfit + ufidt} (OA1-27)

This problem differs from Kyriazidou (1997)’s in two crucial respects. On the one hand, our

problem adds unobserved firm-product-time-varying variables Cfit to equation (OA1-21) and Qfit

to equation (OA1-22). In the presence of these time-varying unobserved factors, the conditional

exchangeablitiy condition no longer holds. On the other hand, many aggregate-level economic

indicators of interest in our study—e.g., exchange rates—vary along the destination and time

dimensions, but not at the firm or product dimensions. This is actually helpful. As discussed

below, the fact that key variables vary along dimensions that are a subset of the dimensions of the

dependent variable facilitates the control of selection biases.

While the method we propose to address the above problem is conceptually close to Kyriazidou

(1997), the approach we take is fundamentally different. Specifically, if we were to follow Kyriazidou

(1997)’s approach, we would require all variables driving Qfit to be observed and controlled for.

For our purposes, however, this condition cannot be satisfied—if only because the marginal cost is

unobserved and cannot be generally estimated at product-firm level. Rather, we need to rely on a

method that avoids direct estimation of the selection equation and works in a multi-dimensional

panel where more than one fixed effect is present in both the structural equation and the selection
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equation. Our main innovation is to use the realized selection pattern in a panel dimension, instead

of the observed variables in the selection equation, to control for selection biases.

Before analyzing how our method addresses the general problem characterized in equations

(OA1-26) and (OA1-27), we find it useful to provide insight by focusing on a two-dimensional panel,

tracking the choices of a single firm selling one product across a set of endogenous destinations.

OA1.2.1 A two dimensional panel case

Consider the following for a firms’ destination choices with two panel dimensions, destination d

and time t:

pdt = x′
dtβ +Md + Ct + εdt (OA1-28)

sdt = 1{udt} (OA1-29)

where Md and Ct are unobserved destination and time specific factors, respectively, which are

potentially correlated with the explanatory variables contained in the vector xdt. The price pdt is

observed only if sdt equals one or equivalently, if udt > 0.

The first two steps in our approach involve transforming the variables in (OA1-28) to eliminate

the unobserved destination and time specific factors. Specifically, in the first step, we demean

variables at the time (t) dimension. In the second step, we demean variables at the destination-

trade pattern (dD) dimension. After applying these two transformations,

p̈dt = ẍ′
dtβ + ε̈dt

where

ẍdt = xdt −
1

nD
t

∑
d∈Dt

xdt −
1

nT
dD

∑
t∈TdD

xdt +
1

nT
dD

∑
t∈TdD

1

nD
t

∑
d∈Dt

xdt (OA1-30)

ε̈dt = εdt −
1

nD
t

∑
d∈Dt

εdt −
1

nT
dD

∑
t∈TdD

εdt +
1

nT
dD

∑
t∈TdD

1

nD
t

∑
d∈Dt

εdt, (OA1-31)

Dt is the set of destinations the firm serves at time t; and nD
t ≡ |Dt| the number of export

destinations at time t. Similarly, TdD denotes the set of time periods in which a destination-specific

trade pattern dD is observed, and nT
dD represents the corresponding number of time periods in

which the destination-specific trade pattern emerges. For our proposed approach to work in a two
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dimensional panel, we need7

F (εdD1, εdD2, udD1, udD2|ϑdD) = F (εdD2, εdD1, udD2, udD1|ϑdD), (OA1-33)

where we use εdD1 to indicate the first error within the destination-specific trade pattern dD. Given

(OA1-33), it is straightforward to see that the selection bias can be differenced out over two time

periods within a destination-specific trade pattern dD, since the following relationship holds:

E (εdDt|udD1 > 0, udD2 > 0,ϑdD) = E (εdDτ |udD1 > 0, udD2 > 0,ϑdD) ∀τ ∈ TdD (OA1-34)

Condition (OA1-33) can be viewed as the analog of the conditional exchangeability assumption

imposed by Kyriazidou (1997). Instead of controlling for the relationship among the observed

variables in the selection process (i.e., w′
d1γ = w′

d2γ), we control for the realised patterns of

selection in a panel dimension (i.e., the pattern of d conditional on t). That is, as long as the

distribution of errors is the same for all time periods satisfying a destination-specific trade pattern

dD, our approach produces unbiased and consistent estimates.8

OA1.2.2 General setting

We now discuss the general multi-dimensional setting specified in (OA1-26) and (OA1-27). With

an additional dimension,9 we can write the condition for identification as follows:

E
[
E (εfidDt|sfidD,ϑfidD)

∣∣∣dt] = E
[
E (εfidDτ |sfidD,ϑfidD)

∣∣∣dt] ∀ τ ∈ TfidD (OA1-35)

where sfidD ≡ (w′
d1γ +Wfid +Qif1 + ufidD1 > 0, ...,w′

dnT
fidD

γ +Wfid +QifnT
fidD

+ ufidDnT
fidD

> 0),

ϑfidD ≡ (xdD1, ...,xdDnT
fidD

,wdD1, ...,wdDnT
fidD

,Wfid,Mfid) and E(.|dt) means taking the expecta-

tion over the firm (f) and product (i) panel dimensions while keeping the destination and time

panel dimensions fixed.

7Note that Kyriazidou (1997)’s original conditions (and proofs) only cover the case when the number of time
periods is equal to two. For a more general case with more than two time periods, we impose a condition:

E
(
εdDt|udD1 > 0, ..., udDnT

dD
> 0, ϑdD

)
= E

(
εdDτ |udD1 > 0, ..., udDnT

dD
> 0, ϑdD

)
∀τ ∈ TdD (OA1-32)

As will be discussed later, our estimator works under a much weaker condition than (OA1-32) if another panel
dimension is available.

8The condition for consistency, i.e., E(sdtẍdtε̈dt) = 0, is satisfied under (OA1-32). First, note that
1

nD
t

∑
d∈Dt

εdt − 1
nT
dD

∑
t∈TdD

1
nD
t

∑
d∈Dt

εdt = 0. This is because the expression 1
nD
t

∑
d∈Dt

εdt is moving at the

dD dimension only. As there is no variation left after conditioning on the dD dimension, the demeaning process
naturally gives zero. Second, demeaning conditional on the same trade pattern is zero under assumption (OA1-32),

i.e., E
(
εdt − 1

nT
dD

∑
t∈TdD

εdt

∣∣∣sdD1, sdD2, sdD3, ..., ϑdD

)
= 0.

9In the following discussions, we consider firm and product as one combined panel dimension fi.
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As can be seen from (OA1-35), we no longer need the error to be zero conditional on the observed

pattern (E (εfidDt − εfidDτ |sfidD,ϑfidD) = 0) as in the two dimensional case. Instead, it is sufficient

to have the expectation of E (εfidDt − εfidDτ |sfidD,ϑfidD) be zero, once it is aggregated at the firm

and product dimension. For example, if E (εfidDt − εfidDτ |sfidD,ϑfidD) consists of random errors

for each firm and product, the mean of these random errors converges to zero when the number of

firm-product pairs increases.

We now show that our proposed approach gives unbiased estimates under condition (OA1-35).

Let vfidt ≡ Mfid + Cfit + εfidt. The underlying independent variables and the error term under

our estimation approach can be written as

ẍfidt = xdt −
1

nD
fit

∑
d∈Dfit

xdt −
1

nT
fidD

∑
t∈TfidD

xdt +
1

nT
fidD

∑
t∈TfidD

1

nD
fit

∑
d∈Dfit

xdt (OA1-36)

v̈fidt = vfidt −
1

nD
fit

∑
d∈Dfit

vfidt −
1

nT
fidD

∑
t∈TfidD

vfidt +
1

nT
fidD

∑
t∈TfidD

1

nD
fit

∑
d∈Dfit

vfidt. (OA1-37)

The independent variable of interest now varies along four dimensions because it embodies selection

that varies across firms and products, even if the variable is specified for only two dimensions, i.e.,

xdt or edt.

Note that the exchange rate depends on the firm and product dimensions only through trade

and time patterns. To see this, it is useful to rewrite the variables in expressions (OA1-36) and

(OA1-37) in terms of their corresponding variability:

ẍfidt = xdt − xDt − xdT + xDT

v̈fidt = vfidt − vfiDt − vfidT + vfiDT

= εfidt − εfiDt − εfidT + εfiDT

= ε̈fidt.

Rearranging these expressions, we can show that our main variables of interest x (including ex-

change rates) in the following expression no longer depend on firm and product dimensions:

1

nFIDT

∑
fidt

ε̈fidtẍfidt =
1

nFIDT

∑
fidt

(εfidt − εfiDt − εfidT + εfiDT )xdt (OA1-38)

=
1

nFIDT

∑
fidt

(εfidt − εfidT )xdt. (OA1-39)
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As a result, the identification condition, E(ε̈fidtẍfidtsfidt) = 0, can be rewritten as

E(ε̈fidtẍfidtsfidt)

= E [(εfidt − εfidT )xdtsfidt]

= E
{
xdtE

[
E (εfidt − εfidT |sfidD,ϑfidD)

∣∣∣dt]}
= E

xdtE

E
εfidDt −

1

nT
fidD

∑
τ∈TfidD

εfidDτ |sfidD,ϑfidD

∣∣∣dt


= 0 (OA1-40)

where the first equality follows from using (OA1-39) under our proposed “within transformation”;

the second equality from applying the law of iterated expectations; and the last equality from

using condition (OA1-35).

Two remarks are in order to clarify the implications of our identification condition and place

our approach in the literature. First, note that the condition (OA1-35) is trivially satisfied if

ε is always zero. For example, if goods sold to different destinations by the same firm under

the same product category are identical, the marginal cost is only firm-product-time specific and

therefore absorbed by Cfit, leaving no additional residual term. It is worth stressing that the

maintained assumption that marginal costs are non-destination-specific is implicit in studies aimed

at estimating productivity (as these do not try to distinguish the marginal cost at the destination

level)—see, e.g., Olley and Pakes (1996), Levinsohn and Petrin (2003), Wooldridge (2009) and

De Loecker et al. (2016).

Second, an important instance in which condition (OA1-35) is satisfied is when the distribution

of the destination-specific component does not change over time, e.g., when the composition of

shipments is such that high quality varieties of a product are consistently sold to high-income

destinations. From this perspective, the condition clarifies that the existence of destination-specific

marginal cost components in ε does not automatically lead to a violation of identification.

OA1.3 The TPSFE estimator relative to De Loecker et al. (2016)

In this subsection, we extend the framework of De Loecker et al. (2016) to add a destination di-

mension, and discuss the structural assumptions that would be required for our main identification

condition (OA1-35) to be satisfied in this new framework.

OA1.3.1 Structural interpretation of assumptions required by our estimator

We start by writing the production function as follows:
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Qfidt = Ffi(Vfidt,Kfidt)Ωfitϑfid (OA1-41)

where Qfidt represents the quantity of exports for product i from firm f to destination d at time t;

Vfidt denotes a vector of variable inputs, {V 1
fidt, V

2
fidt, ..., V

v
fidt}; Kfidt denotes a vector of dynamic

inputs; a firm-product pair make decisions on allocating its dynamic inputs across destinations in

each time period, {K1
fidt, K

2
fidt, ..., K

k
fidt}. We stress that the above function allows for destination-

specific inputs {Vfidt,Kfidt} as well as destination-specific productivity differences, ϑfid, at the firm

and product level. In addition, we allow for the production function and Hicks-neutral productivity

to be firm-product specific.

Specifically, we posit the following:

1. The production technology is firm-product-specific.

2. Ffi(.) is continuous and twice differentiable w.r.t. at least one element of Vfidt, and this

element of Vfidt is a static (i.e., freely adjustable or variable) input in the production of

product i.

3. Ffi(.) is constant return to scale.

4. Hicks-neutral productivity Ωfit is log-additive.

5. The destination specific technology advantage ϑfid takes a log-additive form and is not time

varying.

6. Input prices Wfit are firm-product-time specific.

7. The state variables of the firm are

sfit = {Dfit,Kfit,Ωfit, ϑfid,Gfi, rfidt} (OA1-42)

where Gfi includes variables indicating firm and product properties, e.g., firm registration

types, product differentiation indicators. rfidt collects other observables including variables

that track the destination market conditions, such as the bilateral exchange rate and desti-

nation CPI.

8. Firms minimize short-run costs taking output quantity, Qfidt, and input prices, Wfit, at time

t as given.

The assumptions 1, 2, 4, 8 are standard in the literature. De Loecker et al. (2016) also posit

them, but in our version we allow the production function to be firm specific and the Hicks-
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neutral productivity to be product-specific. Compared to the conditions assumed in the litera-

ture, assumption 5 is a relaxation: it allows for the possibility that (log-additive) productivity be

destination-specific.

Assumptions 6 and 7 allow prices of inputs to be firm and product specific. These two conditions

indicate that firms source inputs at the product level, and then allocate these inputs into production

for different destinations. Note that the firm can arrange different quantities of inputs and have

different marginal costs across destinations for the same product.

The assumption that is crucial to our identification is that the production technology is constant

returns to scale (condition 3). This condition implies that the marginal cost at the firm-product-

destination level does not depend on the quantity produced. If changes in relative demand and

exports across destinations were systematically associated to changes in relative marginal costs,

condition (OA1-35) would be violated. As discussed in the next subsection, looking at the solution

to the firms’ cost minimization problem, condition 3 ensures that the difference in the marginal

costs across destinations only reflects technology differences varying at the destination dimension.

OA1.3.2 The cost minimization problem by firm-product pair

Write the cost function

L(Vfidt,Kfidt, λfidt) =
V∑

v=1

W v
fit

∑
d∈Dfit

V v
fidt +

K∑
k=1

Rk
fit

 ∑
d∈Dfit

Kk
fidt −Kk

fit


+
∑

d∈Dfit

λfidt[Qfidt − Ffi(Vfidt,Kfidt)Ωfitϑfid]

where Kk
fit is the accumulated capital input k in the previous period; Kk

fidt stands for the corre-

sponding allocation for destination d; Rk
fit is the implied cost of capital.10

The F.O.C.s of the cost minimization problem are

∂Lfit

∂V v
fidt

= W v
fit − λfidtΩfitϑfid

∂Ffi(.)

∂V v
fidt

= 0, (OA1-43)

∂Lfit

∂Kk
fidt

= Rk
fit − λfidtΩfitϑfid

∂Ffi(.)

∂Kk
fidt

= 0. (OA1-44)

Conditions (OA1-43) and (OA1-44) need to hold across inputs and across destinations, which

implies the following:

10The assumption that the production function Ffi(.) is firm-product-specific ensures the implied cost of capital
Rk

fit is not destination-specific.

22



W 1
fit

W v
fit

=

∂Ffi(.)

∂V 1
fi1t

∂Ffi(.)

∂V v
fi1t

=

∂Ffi(.)

∂V 1
fi2t

∂Ffi(.)

∂V v
fi2t

= ... =

∂Ffi(.)

∂V 1
fidt

∂Ffi(.)

∂V v
fidt

∀v = 1, ..., V ; d ∈ Dfit, (OA1-45)

W v
fit

Rk
fit

=

∂Ffi(.)

∂V v
f,i,1,t

∂Ffi(.)

∂Kk
fi1t

=

∂Ffi(.)

∂V v
fi2t

∂Ffi(.)

∂Kk
fi2t

= ... =

∂Ffi(.)

∂V v
fidt

∂Ffi(.)

∂Kk
fidt

∀v, k; d ∈ Dfit. (OA1-46)

Note that the production function is assumed to be firm-product specific and constant return

to scale. Together with equations (OA1-45) and (OA1-46), these assumptions imply that the

allocation of variable inputs is inversely proportional to the ratio of the productivity deflated

outputs across destinations, i.e.,

Qfidt

Ωfitϑfid

= c · Qfid′t

Ωfitϑfid′
→ cV ∗

fidt = V ∗
fid′t and cK∗

fidt = K∗
fid′t. (OA1-47)

Utilizing the relationship of (OA1-47) and the assumption that Ffi(.) is constant return to scale,

it is straightforward to see

∂Ffi(V
∗
fidt,K

∗
fidt)

∂V v
fidt

=
∂Ffi(cV

∗
fidt, cK

∗
fidt)

∂(cV v
fidt)

=
∂Ffi(V

∗
fid′t,K

∗
fid′t)

∂V v
fid′t

. (OA1-48)

Rearranging (OA1-43) and (OA1-48) yields:

λfidt =

(
Ωfitϑfid

W v
fit

∂Ffi(V
∗
fidt,K

∗
fidt)

∂V v
fidt

)−1

=

(
Ωfitϑfid

W v
fit

∂Ffi(V
∗
fid′t,K

∗
fid′t)

∂V v
fid′t

)−1

. (OA1-49)

Therefore, the relative marginal cost across destinations is static, depending on the relative pro-

ductivity difference across destinations, i.e.,

λfidt
λfid′t

=
ϑfid′

ϑfid

(OA1-50)

Although the marginal cost is firm-product-destination specific and time-varying, the relative

marginal cost is not. Therefore, condition (OA1-35) is satisfied.
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OA1.3.3 An alternative approach

An alternative approach to reconcile our work with De Loecker et al. (2016) consists of directly

redefining what a product variety is in their model. Namely, if one redefines a product-destination

pair as a variety, i.e., j = {i, d}, then the original setting and assumptions will go through without

any change.

We argue that this approach is not very useful, for two reasons. The first one is practical.

De Loecker et al. (2016) define a product variety as a two-digit industry. The need to define

a product at the industry level is mainly due to data limitations. If one adopts a more refined

product definition, for instance, the estimator by De Loecker et al. (2016) would suffer from a

small sample problem—there would not be enough power to estimate. The small sample problem

will be much more severe if one defines a product-destination pair as a variety. This is due not

only to the smaller number of observations in each cell, but also to the frequent changes in the set

of destinations a firm exports a product to.

The second reason is related to conceptual assumptions regarding production functions. De Loecker

et al. (2016) rely on the assumption that the production function is the same for single- and multi-

product firms. When redefining a product-destination pair as a variety, the identification condition

would require the production function to be product-destination specific and invariant along the

firm dimension. In the context of our problem, controlling for firm-product level marginal cost

is the primary concern. We think that keeping the flexibility of the production function at the

product level is extremely valuable.

OA2 Supplementary Model and Simulation Results

In this appendix, we examine markup elasticities estimated using data generated from an alter-

native model developed by Corsetti and Dedola (2005) and used in Berman et al. (2012), where

variable markups arise due to the existence of local production or distribution costs. Compared to

the model with Kimball (1995) preference, the key advantage of the Corsetti and Dedola (2005) set-

ting is that it allows us to derive analytical solutions and thus make a more transparent statement

about the variables that affect firms’ markup and exporting decisions.

The firm’s problem is given as follows:

max
Pfidt,ϕfidt∈{0,1}

ϕfidt [(Pfidt −MCfidt)ψi(αfidt, Pfidt, Edt)− ζi]

ψi(αfidt, Pfidt, Edt) ≡ αfidt

(
Pfidt

Edt
+ χi

)−ρi
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where χi > 0 is the local distribution cost denominated in the destination country’s currency;

ρi > 1 is the elasticity of substitution across varieties of product i; ϕfidt ∈ {0, 1} is an indicator

that equals one if firm f decides to export its product i to destination d at time t; Pfidt is the

border price denominated in the exporter’s currency; MCfidt denotes the marginal cost; αfidt is a

markup-irrelevant demand shifter; Edt is the bilateral exchange rate with an increase in Edt meaning

a depreciation of the exporting country’s currency; and ψi(.) gives the demand facing firm f selling

product i in destination d in time t.

The firm’s optimal price denominated in the exporter’s currency is given by:

P ∗
fidt =

ρi
ρi − 1

(
MCfidt +

χi

ρi
Edt
)

(OA2-1)

Defining the markup as µfidt ≡ P ∗
fidt/MCfidt, the optimal markup adjustment can be written

as a function of changes in the exchange rate Êdt and the marginal cost M̂Cfidt (up to a first-order

approximation):

µ̂fidt = Γfidt

(
Êdt − M̂Cfidt

)
(OA2-2)

with the markup elasticity to exchange rates given by:

Γfidt ≡
χiEdt

ρiMCfidt + χiEdt
(OA2-3)

Equations (OA2-2) and (OA2-3) highlight the two key theoretical predictions of the model: (a)

the markup elasticity to the exchange rate is decreasing in ρi, suggesting high differentiation goods

tend to have higher markup adjustments relative to low differentiation goods; and (b) the markup

elasticity is increasing in the retail cost ratio, suggesting that more productive firms—with lower

marginal costs and larger market shares—tend to make higher markup adjustments.

The entry and exit decisions of a firm’s product depend crucially on the changes in the opera-

tional profit of the firm-product in a destination market:

π̂fidt = α̂fidt +

(
1 +

ρi − 1

1 + ωfidt

)
Êdt −

ρi − 1

1 + ωfidt

M̂Cfidt (OA2-4)

where ωfidt ≡ χiEdt/MCfidt > 0 is the retail cost ratio defined as the distribution cost expressed

in the producer’s currency divided by the marginal cost.

Direction of potential biases. As we discussed in section 6 of the paper, the direction of the

selection bias depends on how the variable of interest (i.e., Edt) and the unobserved variable (e.g.,

MCfidt) enter the pricing and the selection equations. First of all, equations (OA2-1) and (OA2-4)

show that the exchange rate Edt has positive impacts on the optimal price P ∗
fidt and the operational

profit πfidt. Second, we can see from these two equations that a higher marginal cost increases the
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optimal price of the firm but reduces the operating profit, making the firm less likely to enter a

market. These relationships suggest that the unobserved marginal cost will result in an upward

selection bias in the estimated markup elasticity to exchange rates. Intuitively, this is because

when the exchange rate is unfavourable (i.e., when Edt is low), the marginal cost MCfidt needs

to be sufficiently low for a firm to find it optimal to export its product to a market. Therefore,

selection makes us more likely to observe low (high) marginal cost firms when the exchange rate

is low (high), which leads to a positive correlation between the unobserved marginal cost and the

exchange rate in the observed transactions and thus results in an upward selection bias.

We have focused on the selection bias in the above discussions. In general, the total bias caused

by the unobserved marginal cost will also depend on the correlation between the marginal cost

and the exchange rate in the absence of any selection effects. For example, if the marginal cost

is positively correlated with exchange rates (e.g., due to a higher cost of imported inputs), then

there will be an upward omitted variable bias even if we could observe the optimal price for all

firms (including those that do not find it optimal to export). In this case, the omitted variable

bias and the selection bias will reinforce each other and result in a significantly larger bias.

Finally, we note that, since preference shocks α̂fidt do not affect the optimal price of the firm

(see equation (OA2-1)), omitting them in the estimation of the markup elasticity to exchange rates

will not result in any selection or omitted variable bias. By the same token, since the entry cost

ζi does not affect the optimal price, changes in the entry cost will not cause any bias.

Simulation setup. We follow the same exchange rate data-generating process as in the paper:

ln (Edt) = σE(vd ∗ Ft + udt) (OA2-5)

where changes in Edt are driven by (i) economic fundamentals of the origin country captured by

Ft, which can have differential effects in each destination market vd, and (ii) a noise term udt that

captures exchange rate changes due to financial market fluctuations, for example. σE controls for

the relative size of exchange rate shocks.

The marginal cost MCfidt =Mfidt/Afi is comprised of two terms, where Mfidt denotes shocks

to the firm’s marginal costs due to firm-specific or macro reasons, and Afi is the productivity of

the firm-product drawn from a Pareto distribution. In contrast to the simulation setting in our

paper, we now allow for firm-product-destination specific cost components and shocks:

ln (Mfidt) =


σM(vfi ∗ Ft + ufit) in panel (a)

σM(vfi ∗ Ft + ufit) + σDςfid in panel (b)

σM(vfi ∗ Ft + ufit) + σDςfid(Ft + ufidt) in panel (c)

(OA2-6)

As we discussed in the paper, the σM(vfi ∗ Ft + ufit) term in ln (Mfidt) captures time-varying

26



firm-product marginal costs that are positively correlated with exchange rates. The setting in

panel (b) allows for a firm-product-destination-specific cost component ςfid, whereas the setting

in panel (c) permits the firm-product-destination-specific cost component to be time-varying and

correlated with the shocks to the economic fundamentals Ft.

Factors Ft, udt, ufit and ufidt are independently drawn from a standard normal distribution.

Firm, product and destination specific effects vfi, vd and ςfid are drawn from a standard uniform

distribution. We set σE = 0.02, σM = 0.05 and σD = 0.075 and give more weight to firm-

product specific shocks so that most of the changes in the firms’ trade patterns are driven by these

unobserved shocks rather than by the observed bilateral exchange rate changes. We set the local

distribution cost χi = 0.5 so that the median distribution margin is around 40-50%, roughly in

line with the recent empirical estimates (see, e.g., Berger et al. (2012)). We set the fixed cost of

entry ζi so that about 20% of firms selling each product export.

Simulation results. Tables OA2-1 and OA2-2 show the estimates under three different

marginal cost processes described in (OA2-6) for the Corsetti and Dedola (2005) model discussed

above and the Kimball (1995) model in section 6 of the paper, respectively.11

We compare the performance of our TPSFE estimator (column 7) along with six alternative

approaches (columns 1-6) and the benchmark estimates from an infeasible estimator (column 8).

Specifically, column (1) shows the OLS estimates from regressing ln(Pfidt) on ln(Edt). Column (2)

shows the estimates that would have been obtained from productivity and marginal cost estimation

approaches, where we add the mean marginal cost of a firm’s product in a period (i.e., MCfit ≡
1

nD
fit

∑
d∈Dfit

MCfidt) as an additional control variable to the OLS specification in column (1).

Column (3) shows the estimates from the original Knetter (1989) approach. Column (4) shows

results from the “S-difference” specification of Gopinath et al. (2010). Columns (5) and (6) report

estimates using firm-product-destination + time and firm-product-time + destination fixed effects,

respectively. Column (7) reports the estimates from our TPSFE estimator. Finally, in the last

column (8), we report the benchmark estimates from an infeasible estimator by running an OLS

regression which includes all the unobserved variables (e.g., the true marginal cost MCfidt) in the

specification. This regression gives the best linear relationship that an econometrician could get

without specifying the underlying theoretical model.

The key takeaways in panel (a) of the two tables are the same as those we discussed in section

6 of the paper: the marginal cost estimation approach (2) and the fixed effect approaches (6) and

(7) give estimates that are very close to the benchmark best linear estimates. Panel (b) of both

tables show that, similar to the case of adding firm-product-destination-specific demand conditions

11Since demand shocks do not result in any bias in the estimation of markup elasticities in Corsetti and Dedola
(2005), we also shut down the markup-relevant demand shocks in the simulations of the Kimball model (by setting
ln(Dfidt) = 0) to make the simulation results of the two models more comparable. We allow for firm-product-
destination-specific markup-irrelevant demand shifters αfid in both models.
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Table OA2-1: Comparison of Estimators – Corsetti and Dedola (2005)

(1) (2) (3) (4) (5) (6) (7) (8)

Sample OLS
OLS
with
MCfit

d+ t FE S-diff
fid+ t
FE

fit+ d
FE

TPSFE
Best
Linear

Panel (a): firm-product-time cost shocks

All 1.30 0.15 1.48 0.31 0.31 0.12 0.12 0.15
(0.02) (0.00) (0.03) (0.00) (0.00) (0.00) (0.00) (0.00)

HD (ρ = 4) 1.45 0.20 1.45 0.38 0.38 0.17 0.20 0.20
(0.03) (0.00) (0.03) (0.01) (0.01) (0.00) (0.00) (0.00)

LD (ρ = 12) 1.14 0.08 1.14 0.24 0.24 0.07 0.07 0.08
(0.02) (0.00) (0.03) (0.01) (0.01) (0.00) (0.00) (0.00)

Panel (b): firm-product-time cost shocks + firm-product-destination specific cost component

All 1.29 0.16 1.47 0.31 0.30 0.15 0.12 0.14
(0.02) (0.00) (0.03) (0.00) (0.00) (0.00) (0.00) (0.00)

HD (ρ = 4) 1.44 0.21 1.44 0.38 0.37 0.19 0.19 0.20
(0.03) (0.00) (0.03) (0.01) (0.01) (0.00) (0.00) (0.00)

LD (ρ = 12) 1.14 0.11 1.14 0.24 0.24 0.10 0.07 0.08
(0.02) (0.00) (0.03) (0.01) (0.01) (0.00) (0.00) (0.00)

Panel (c): firm-product-destination-time cost shocks

All 1.29 0.23 1.46 0.83 0.38 0.23 0.15 0.15
(0.02) (0.00) (0.03) (0.01) (0.01) (0.00) (0.01) (0.00)

HD (ρ = 4) 1.44 0.27 1.42 0.89 0.46 0.26 0.27 0.21
(0.03) (0.01) (0.03) (0.01) (0.01) (0.01) (0.01) (0.00)

LD (ρ = 12) 1.14 0.19 1.14 0.77 0.31 0.21 0.10 0.08
(0.02) (0.01) (0.03) (0.01) (0.01) (0.01) (0.01) (0.00)

Note: Estimates and standard errors are calculated based on the average of 10 simulations of each setting.
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Table OA2-2: Comparison of Estimators – Kimball (1995)

(1) (2) (3) (4) (5) (6) (7) (8)

Sample OLS
OLS
with
MCfit

d+ t FE S-diff
fid+ t
FE

fit+ d
FE

TPSFE
Best
Linear

Panel (a): firm-product-time cost shocks

All 1.36 0.17 1.50 0.36 0.35 0.17 0.15 0.17
(0.02) (0.00) (0.02) (0.00) (0.00) (0.00) (0.00) (0.00)

HD (ρ = 4) 1.51 0.27 1.51 0.46 0.45 0.26 0.27 0.27
(0.02) (0.00) (0.02) (0.01) (0.01) (0.00) (0.00) (0.00)

LD (ρ = 12) 1.21 0.09 1.21 0.26 0.26 0.09 0.09 0.09
(0.02) (0.00) (0.03) (0.01) (0.01) (0.00) (0.00) (0.00)

Panel (b): firm-product-time cost shocks + firm-product-destination specific cost component

All 1.34 0.20 1.48 0.35 0.35 0.21 0.16 0.17
(0.02) (0.00) (0.02) (0.00) (0.00) (0.00) (0.00) (0.00)

HD (ρ = 4) 1.49 0.29 1.49 0.45 0.45 0.29 0.27 0.27
(0.02) (0.00) (0.02) (0.01) (0.01) (0.00) (0.00) (0.00)

LD (ρ = 12) 1.20 0.12 1.21 0.26 0.26 0.13 0.09 0.09
(0.02) (0.00) (0.03) (0.01) (0.01) (0.00) (0.00) (0.00)

Panel (c): firm-product-destination-time cost shocks

All 1.35 0.27 1.49 0.86 0.43 0.30 0.17 0.17
(0.02) (0.00) (0.02) (0.01) (0.01) (0.00) (0.01) (0.00)

HD (ρ = 4) 1.50 0.35 1.50 0.92 0.53 0.36 0.29 0.27
(0.02) (0.00) (0.02) (0.01) (0.01) (0.01) (0.01) (0.00)

LD (ρ = 12) 1.21 0.21 1.21 0.79 0.33 0.24 0.10 0.09
(0.02) (0.01) (0.03) (0.01) (0.01) (0.01) (0.01) (0.00)

Note: Estimates and standard errors are calculated based on the average of 10 simulations of each setting.
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discussed in the paper, allowing for firm-product-destination-specific cost components results in

biased estimates in specifications (2) and (6). However, a key difference is that the presence of

unobserved marginal cost components will result in an upward selection bias (as opposed to a

downward bias in the case of markup-relevant demand shocks). As we can see from panel (b)

of both tables, the estimates of specifications (2) and (6) tend to be larger than the benchmark

estimates in column (8) and the difference in the estimates is larger for low differentiation goods,

reflecting that the goods with a high elasticity of substitution are more sensitive to cost changes.

Finally, in the very challenging case of exchange rates correlated with firm-product-destination-

time cost shocks in panel (c), we see our TPSFE estimator outperforms alternative approaches

and gives estimates closer to the benchmark estimates in column (8). This is particularly true for

the low differentiation goods that are more sensitive to cost changes.
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